Sequence-discriminative training of deep neural networks
نویسندگان
چکیده
Sequence-discriminative training of deep neural networks (DNNs) is investigated on a 300 hour American English conversational telephone speech task. Different sequencediscriminative criteria — maximum mutual information (MMI), minimum phone error (MPE), state-level minimum Bayes risk (sMBR), and boosted MMI — are compared. Two different heuristics are investigated to improve the performance of the DNNs trained using sequence-based criteria — lattices are regenerated after the first iteration of training; and, for MMI and BMMI, the frames where the numerator and denominator hypotheses are disjoint are removed from the gradient computation. Starting from a competitive DNN baseline trained using cross-entropy, different sequence-discriminative criteria are shown to lower word error rates by 8-9% relative, on average. Little difference is noticed between the different sequencebased criteria that are investigated. The experiments are done using the open-source Kaldi toolkit, which makes it possible for the wider community to reproduce these results.
منابع مشابه
Large-scale, sequence-discriminative, joint adaptive training for masking-based robust ASR
Recently, it was shown that the performance of supervised timefrequency masking based robust automatic speech recognition techniques can be improved by training them jointly with the acoustic model [1]. The system in [1], termed deep neural network based joint adaptive training, used fully-connected feedforward deep neural networks for estimating time-frequency masks and for acoustic modeling; ...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملCollaborative Layer-Wise Discriminative Learning in Deep Neural Networks
Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it ...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملImproving Computer Lipreading via DNN Sequence Discriminative Training Techniques
Although there have been some promising results in computer lipreading, there has been a paucity of data on which to train automatic systems. However the recent emergence of the TCDTIMIT corpus, with around 6000 words, 59 speakers and seven hours of recorded audio-visual speech, allows the deployment of more recent techniques in audio-speech such as Deep Neural Networks (DNNs) and sequence disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013